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Asymmetric Canonical Correlation Analysis of

Riemannian and High-dimensional data
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Introduction
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Large-scale neuroimaging studies - asymmetric

data

● A primary goal of studies like the Human Connectome Project,
ABCD, and the UK Biobank is to understand the relationship
between brain imaging data and non-imaging high-dimensional
variables.

● Imaging data come from fMRI data which are summarized via a
covariance matrix.

● High dimensional variables include measures of cognitive ability,
neurodegenerative conditions, mental health disorders,
psychometric test scores, and other external factors.
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Imaging Data - Static functional connectivity

● For each patient, form a covariance matrix based on signals from
m different brain regions.

● yi ∈ Rm×m for each patient i = 1, . . .N.
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Imaging data - Dynamic functional connectivity

● In contrast to static functional connectivity is dynamic functional
connectivity: if we partition the time interval into smaller parts, we
can form several covariance matrices for each patient.

● yi(t1), . . . yi(tL) ∈ Rm×m for each patient i = 1, . . .N.

● The set of m ×m covariance matrices form a manifoldM, with
several Riemannian metrics of interest for different applications.
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Setup: Study relationship between different data

views

● y ∶ [0,1] →M is a random manifold-valued function, represents
dynamic brain imaging data.

● X ∈ Rp is a multivariate random vector, represents
high-dimensional data.

● In practice, we observe i.i.d. pairs (Xi , yi) for i = 1, . . .N and where
each yi is observed at discrete timepoints tl for l = 1, . . .L: yi(tl).
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Generalizing Canonical Correlation Analysis
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How can we study the relationship between X and

y?

● Suppose y ∈ Rq, multivariate data.

● We can use multivariate linear regression: minimize
B∈Rq×p

E [∥y −BX ∥22]

● Interpretation of B derives from the fact that B maps X onto the
y scale.

● B contains ‘joint’ information about both X and Y .
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Introduction to CCA

● Given random vectors X ∈ Rp and Y ∈ Rq, classical CCA solves the
following problem:

maximize
a∈Rp ,b∈Rq

Corr2 (⟨a,X ⟩, ⟨b,Y ⟩) .

● ⟨a,X ⟩ ≡ a⊺X . Since the problem is invariant to scaling of a and b,
a and b are rescaled so that Var (⟨a,X ⟩) = Var (⟨b,Y ⟩) = 1.

● The pair of random variables U ≡ ⟨a,X ⟩ and V ≡ ⟨b,Y ⟩ are called
the first pair of canonical scores (or canonical variables).

● The solution pair (a,b) is called the first pair of canonical
directions (or canonical vectors).
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Introduction to CCA

● We can define subsequent pairs of canonical vectors

(a1,b1) = argmax
a∈Rp ,b∈Rq ,Var(⟨a,X ⟩)=Var(⟨b,Y ⟩)=1

Corr2 (⟨a,X ⟩, ⟨b,Y ⟩) ,

(ak ,bk) = argmax
a∈Rp ,b∈Rq ,Var(⟨a,X ⟩)=Var(⟨b,Y ⟩)=1

Corr(⟨a,X ⟩,⟨ai ,X ⟩)=0,i=1,...,k−1
Corr(⟨b,Y ⟩,⟨bi ,Y ⟩)=0,i=1,...,k−1

Corr2 (⟨a,X ⟩, ⟨b,Y ⟩)

for k = 2, . . .min(p,q)

● When X ∈ Rp and Y ∈ Rq, there are always at most min(p,q)
nontrivial canonical vector pairs (ak ,bk).

● In practice, we observe i.i.d. pairs (Xi ,Yi) for i = 1, . . .N.
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Can we generalize classical CCA?

● Data: X ∈ Rp, y ∶ [0,1] →M

● The classical CCA model solves

(a1,b1) = argmax
a∈Rp ,b∈Rq ,Var(⟨a,X ⟩)=Var(⟨b,Y ⟩)=1

Corr2 (⟨a,X ⟩, ⟨b,Y ⟩) .

● Do we have an analogue of ⟨b, y⟩ for y ∶ [0,1] →M?

● No, since we don’t necessarily have an inner product structure on
a non-EuclidianM.
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Machinery of Riemannian manifolds
Geodesic distance:

● d(⋅, ⋅) ∶ M×M→ R≥0
Tangent space at x ∈ M:

● Vector space TxM equipped with
Riemannian metric ⟨⋅, ⋅⟩x

Logarithmic map:

● Logx(⋅) ∶ M → TxM
Exponential map:

● Inverse of Logarithmic map,
Expx(⋅) ∶ TxM→M.

Frechet mean:

● For a random element y ∈ M, the
average value of y ,
argmin

x∈M
E [d2 (x , y)]
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Geometry of positive definite matrices

Affine-invariant metric on set of m ×m positive definite matrices:

● Affine-invariant property: dM (ΣX ,ΣY ) = dM (ΣRX ,ΣRY ) for
any orthogonal matrix R ∈ Rm×m, random vectors X ,Y ∈ Rm.

● Tangent spaces TPM: isomorphic to the set of m ×m symmetric
matrices.

● Riemannian metric: P ∈ M between W ,Z ∈ TPM is defined as
⟨W ,Z ⟩M = tr (P−1WP−1Z).
● Logarithmic map: LogP(Q) = P1/2 log (P−1/2QP−1/2)P1/2

▸ Maps manifold representation to tangent space representation.

● Exponential map: ExpP(W ) = P1/2 exp (P−1/2WP−1/2)P1/2

▸ Maps tangent space representation to manifold representation.

● Log and Exp are global bijections.
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Move y ∶ [0, 1] →M to its tangent space

representation

Define Frechet mean µ of y :

● µ(t) = argmin
x∈M

E [d2
M(y(t), x)].

Define y ’s tangent space representation:

● Logµ y ∶ t ↦ Logµ(t) y(t).
● ∀t ∈ [0,1],Logµ(t) y(t) ∈ Tµ(t)M

Vector fields with this property
{V (t) ∶ ∀t ∈ [0,1],V (t) ∈ Tµ(t)M} form a
vector space:

● Endow with an inner product:
⟪U,V⟫µ ∶= ∫[0,1]⟨V (t),U(t)⟩µ(t)dt
● This forms a Hilbert space we denote
L2(Tµ).
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Population CCA Problem

● The canonical correlation problem we end up with is the following:
for y ∶ [0,1] →M and X ∈ Rp, solve

maximize
a∈Rp ,b∈L2(Tµ)

Corr2 (⟪b,Logµ y⟫µ, ⟨a,X ⟩) (1)

subject to the constraints that

Var (⟨a,X ⟩) = Var (⟪b,Logµ y⟫µ) = 1.

● a and b called the canonical directions.

● In order to interpret the canonical direction b, we can map it back
to the manifold via the exponential map along µ.
t ↦ Expµ(t) (b(t))

● Two issues to handle: a is high dimensional, and b lives in an
infinite dimensional space L2(Tµ).

18 / 42



Population CCA Problem

● The canonical correlation problem we end up with is the following:
for y ∶ [0,1] →M and X ∈ Rp, solve

maximize
a∈Rp ,b∈L2(Tµ)

Corr2 (⟪b,Logµ y⟫µ, ⟨a,X ⟩) (1)

subject to the constraints that

Var (⟨a,X ⟩) = Var (⟪b,Logµ y⟫µ) = 1.

● a and b called the canonical directions.

● In order to interpret the canonical direction b, we can map it back
to the manifold via the exponential map along µ.
t ↦ Expµ(t) (b(t))

● Two issues to handle: a is high dimensional, and b lives in an
infinite dimensional space L2(Tµ).

19 / 42



Approach to the problem
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How to handle infinite dimensional L2(Tµ)?
We don’t expect Logµ y to vary in its infinite dimensional space along
many directions.
● Use dimensionality reduction.

We can use the data-driven functional Principal component analysis
(FPCA) to find the ‘best’ finite dimensional basis to project Logµ y
into.
● This reduces Logµ y to a multivariate Y ∈ Rd .

Logµ y ≈ ∑d
j=1 ϕjYj for functions ϕj ∈ L2(Tµ) and a random vector

Y ∈ Rd .
● ϕj are the principal components.
● Yj are the principal scores.

Problem Reformulation: Multivariate CCA

maximize
a∈Rp ,η∈Rd

Corr2 (⟪η,Y ⟫, ⟨a,X ⟩) (2)

b related to η via b = ∑d
k=1 ηkϕk .
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Multivariate CCA with high-dimensional X

● X ∈ Rp, p large and Y ∈ Rd , d small.

● In practice we have N samples: if N is smaller than p, then
classical CCA fails.

▸ Classical CCA uses an estimate of the precision matrix Σ−1X .
▸ Estimation for N < p is hard: requires either strong assumptions

on the form of ΣX or Σ−1X .

● In the high-dimensional setting, we would like to do variable
selection.

▸ Even if N > p, classical CCA does not perform variable selection.
▸ Ideally we would have sparse estimates ak : then the canonical

variable a⊺kX ignores the corresponding X variables where there are
0s in ak .

▸ Sparse canonical directions are much more interpretable.
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Sparse regression implies sparse CCA

Theorem

Letting B be the solution to the multivariate least-squares problem

minimize
B∈Rp×d

E [∥Σ−1/2Y Y −B⊺X ∥22] , (3)

we can find all canonical vectors for both Y and X via B.
Denote the canonical vectors associated with X (the ak) as the columns
of A, and those with Y (the ηk) as the columns of H. Let the
eigenvector decomposition of the matrix B⊺ΣXB be ED2E⊺ where

E ∈ Rd×d is orthogonal, and D ∈ Rd×d is diagonal. Then, H = Σ−1/2Y E
and A = BED−1.

Sparsity in the regression matrix B is carried over into our estimates of
the canonical vectors for X .

● If B has only s non-zero rows, then A has only s non-zero rows.
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Methodology

1. We are given (Xi , yi(tl)) pairs for i = 1, . . .N, l = 1, . . .L, where
Xi ∈ Rp, yi ∶ [0,1] →M.

2. Estimate the Frechet mean of the {yi(tl)}i=1,...N for every l ,
forming µ̂(tl).

3. Compute Logµ̂(tl) yi(tl) ∈ Tµ̂(tl)M for all i and l .

4. Summarize the Logµ̂ yi as Yi ∈ Rd with FPCA: Logµ̂ y ≈ ∑d
j=1 ϕ̂jYj

for functions ϕ̂j ∈ L2(T µ̂), j = 1, . . .d .
5. Compute B̂ solving the group lasso problem

B̂ = argmin
B∈Rp×d

2

N
∥YΣ̂−1/2Y −XB∥

2

F
+ λ ∥B∥ℓ1,ℓ2 (4)

6. Find the eigenvector decomposition ED2E⊺ = B̂⊺Σ̂X B̂.

7. Compute Ĥ = [η̂1, . . . , η̂d] and Â = [â1, . . . , âd] via Ĥ = Σ̂−1/2Y E

and Â = B̂ED−1. Then b̂j = ∑d
k=1 ϕ̂k η̂jk ∈ L2(T µ̂).

8. Return canonical directions Â and {b̂j}j=1,...d .
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Theory
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Special case of multivariate Y

Main assumptions (slow-rate bound):

● X ∈ Rp and Y ∈ Rd are subgaussian, with invertible covariance
matrices.

● d log(p) = o(N)
● Lasso parameter λ = O (

√
d log(p)

N ) rate.

∥ak − âk∥22 = OP
⎛
⎝
( d
N

log (p))
1/2 ∥Σ−1X ∥2

min (γ2k−1 − γ2k , γ2k − γ2k+1)
2

⎞
⎠
,

∥ηk − η̂k∥22 = OP
⎛
⎝
( d
N

log (p))
1/2 ∥Σ−1Y ∥2

min (γ2k−1 − γ2k , γ2k − γ2k+1)
2

⎞
⎠
.
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Bounds for full algorithm

Assumptions:

● The manifoldM is a complete simply-connected Riemannian
manifold with nonpositive sectional curvature.

● The functional data are such that sup
t∈T

E [d (y1(t), y2(t))3] < ∞.

● The ak satsify an group s-sparsity condition.

∥ak − âk∥22 = OP
⎛
⎝
ds log(p)

N

1

min (γ2k−1 − γ2k , γ2k − γ2k+1)
2

⎞
⎠
,

∥bk − Γµ̂,µb̂k∥2µ = OP
⎛
⎝
d2s log(p)

N

1

min (γ2k−1 − γ2k , γ2k − γ2k+1)
2

⎞
⎠
.
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Application
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Canonical corrrelation analysis via Variational

Autoencoders
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Motivation

● Dimension reduction and CCA are not done jointly.
● Nonlinear mapping (moving to tangent spaces) is prespecified.
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Motivation cont.

● On the other hand, we can think of the dimension reduced Y as a
latent variable.

● Both PCA and CCA can be defined in terms of latent variable
models.

● Probabilistic PCA: Y ∈ Rd , y ∈ Rq, q > d :

Y ∼ N (0, Id) (5)

y ∼ N (WY + µ,σ2Iq) (6)

● Given a finite sample {Yi}i=1,...N , the maximum likelihood solution
for W reduces to classical PCA as σ approaches 0.
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Original Model

● Dimension reduction and CCA are not done jointly.
● Nonlinear mapping (moving to tangent spaces) is prespecified.
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Model - Variational Autoencoder

● We still perform CCA by learning the regression matrix B, but now
the encoder and decoder (represented by a neural networks) is a
learned nonlinear mapping.
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Model - Variational Autoencoder

● Data Xi ∈ Rp and imaging data yi , i = 1, . . .N.

ξ̂, γ̂, B̂ = argmin
B∈Rp×d ,ξ,γ

N

∑
i=1

∥yi −Dξ(Yi)∥22
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Image reconstruction error

+ DKL (qγ(⋅∣yi),pN (⋅))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Distribution of latent variables

+ ∥Yi −B⊺Xi∥
2

2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CCA via Regression

● ξ are the parameters for the decoder, while γ control the
parameters for the encoder.

● We can then apply the same eigenvector approach as before to
learn the canonical vectors via B, relative to X and Y .

● The canonical vectors for y can then be mapped through the
decoder: bk = Dξ (ηk)
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Conclusions
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Conclusions

● We define the CCA problem in the asymmetric setting of X
multivariate and y ∶ T →M, by utilizing the Frechet mean and
Logarithmic map onM.

● Theoretical guarantees for manifold and multivariate cases.

● We use our methodology to find shared correlation structure
between dynamical functional connectivity and subject traits.

● We generalize our model from the first project via variational
autoencoders to automatically uncover non-linear structure.
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Thank you!

Questions?
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