Integrative analysis of non-Euclidian data

James Buenfil

University of Washington

October 28th, 2024

- 1. Asymmetric Canonical Correlation analysis of Riemannian and high-dimensional data
 - 1.1 Introduction
 - 1.2 Generalizing Canonical Correlation Analysis
 - $1.3\;$ Approach to the problem
 - 1.4 Theory
 - 1.5 Application
- 2. Canonical corrrelation analysis via Variational Autoencoders
 - 2.1 Motivation
 - 2.2 Model
- 3. Conclusions

Asymmetric Canonical Correlation Analysis of Riemannian and High-dimensional data

Introduction

Large-scale neuroimaging studies - asymmetric data

- A primary goal of studies like the Human Connectome Project, ABCD, and the UK Biobank is to **understand the relationship** between brain imaging data and non-imaging high-dimensional variables.
- **Imaging data** come from fMRI data which are summarized via a covariance matrix.
- **High dimensional variables** include measures of cognitive ability, neurodegenerative conditions, mental health disorders, psychometric test scores, and other external factors.

Imaging Data - Static functional connectivity

- For each patient, form a covariance matrix based on signals from *m* different brain regions.
- $y_i \in \mathbb{R}^{m \times m}$ for each patient $i = 1, \dots N$.

Imaging data - Dynamic functional connectivity

- In contrast to static functional connectivity is dynamic functional connectivity: if we partition the time interval into smaller parts, we can form several covariance matrices for each patient.
- $y_i(t_1), \ldots, y_i(t_L) \in \mathbb{R}^{m \times m}$ for each patient $i = 1, \ldots, N$.
- The set of $m \times m$ covariance matrices form a manifold \mathcal{M} , with several Riemannian metrics of interest for different applications.

Setup: Study relationship between different data views

- *y* : [0,1] → *M* is a **random manifold-valued function**, represents dynamic brain imaging data.
- *X* ∈ ℝ^{*p*} is a **multivariate random vector**, represents high-dimensional data.
- In practice, we observe i.i.d. pairs (X_i, y_i) for i = 1,...N and where each y_i is observed at discrete timepoints t_l for l = 1,...L: y_i(t_l).

Generalizing Canonical Correlation Analysis

How can we study the relationship between X and y?

• Suppose $y \in \mathbb{R}^{q}$, multivariate data.

• We can use multivariate linear regression: minimize $\mathbb{E}\left[\|y - BX\|_2^2\right]$

- Interpretation of *B* derives from the fact that *B* maps *X* onto the *y* scale.
- B contains 'joint' information about both X and Y.

Introduction to CCA

• Given random vectors $X \in \mathbb{R}^p$ and $Y \in \mathbb{R}^q$, classical CCA solves the following problem:

$$\underset{a \in \mathbb{R}^{p}, b \in \mathbb{R}^{q}}{\text{maximize Corr}^{2}(\langle a, X \rangle, \langle b, Y \rangle)}.$$

- ⟨a, X⟩ ≡ a^TX. Since the problem is invariant to scaling of a and b, a and b are rescaled so that Var(⟨a, X⟩) = Var(⟨b, Y⟩) = 1.
- The pair of random variables U ≡ (a, X) and V ≡ (b, Y) are called the *first pair of canonical scores* (or canonical variables).
- The solution pair (*a*, *b*) is called the *first pair of canonical directions* (or canonical vectors).

Introduction to CCA

• We can define subsequent pairs of canonical vectors

for $k = 2, ..., \min(p, q)$

- When $X \in \mathbb{R}^p$ and $Y \in \mathbb{R}^q$, there are always at most min(p, q) nontrivial canonical vector pairs (a_k, b_k) .
- In practice, we observe i.i.d. pairs (X_i, Y_i) for i = 1, ..., N.

Can we generalize classical CCA?

- Data: $X \in \mathbb{R}^p$, $y : [0,1] \rightarrow \mathcal{M}$
- The classical CCA model solves

$$(a_1, b_1) = \arg \max_{a \in \mathbb{R}^p, b \in \mathbb{R}^q, \mathsf{Var}(\langle a, X \rangle) = \mathsf{Var}(\langle b, Y \rangle) = 1} \mathsf{Corr}^2(\langle a, X \rangle, \langle b, Y \rangle).$$

• Do we have an analogue of $\langle b, y \rangle$ for $y : [0,1] \rightarrow \mathcal{M}$?

Can we generalize classical CCA?

- Data: $X \in \mathbb{R}^p$, $y : [0,1] \rightarrow \mathcal{M}$
- The classical CCA model solves

$$(a_1, b_1) = \arg \max_{a \in \mathbb{R}^p, b \in \mathbb{R}^q, \operatorname{Var}(\langle a, X \rangle) = \operatorname{Var}(\langle b, Y \rangle) = 1} \operatorname{Corr}^2(\langle a, X \rangle, \langle b, Y \rangle).$$

- Do we have an analogue of $\langle b, y \rangle$ for $y : [0,1] \rightarrow \mathcal{M}$?
- No, since we don't necessarily have an **inner product structure** on a non-Euclidian \mathcal{M} .

Machinery of Riemannian manifolds

Geodesic distance:

• $d(\cdot, \cdot) : \mathcal{M} \times \mathcal{M} \to \mathbb{R}_{\geq 0}$

Tangent space at $x \in \mathcal{M}$:

• Vector space $T_x \mathcal{M}$ equipped with Riemannian metric $\langle \cdot, \cdot \rangle_x$

Logarithmic map:

• $\operatorname{Log}_{X}(\cdot): \mathcal{M} \to T_{X}\mathcal{M}$

Exponential map:

• Inverse of Logarithmic map, $\operatorname{Exp}_{x}(\cdot): T_{x}\mathcal{M} \to \mathcal{M}.$

Frechet mean:

For a random element y ∈ M, the average value of y, arg min E [d² (x, y)]

Geometry of positive definite matrices

Affine-invariant metric on set of $m \times m$ positive definite matrices:

- Affine-invariant property: d_M (Σ_X, Σ_Y) = d_M (Σ_{RX}, Σ_{RY}) for any orthogonal matrix R ∈ ℝ^{m×m}, random vectors X, Y ∈ ℝ^m.
- **Tangent spaces** $T_P \mathcal{M}$: isomorphic to the set of $m \times m$ symmetric matrices.
- Riemannian metric: $P \in \mathcal{M}$ between $W, Z \in T_P \mathcal{M}$ is defined as $\langle W, Z \rangle_{\mathcal{M}} = \operatorname{tr} (P^{-1}WP^{-1}Z).$
- Logarithmic map: $Log_P(Q) = P^{1/2} log (P^{-1/2}QP^{-1/2}) P^{1/2}$
 - Maps manifold representation to tangent space representation.
- Exponential map: $Exp_P(W) = P^{1/2} exp(P^{-1/2}WP^{-1/2})P^{1/2}$
 - Maps tangent space representation to manifold representation.
- Log and Exp are global bijections.

Move $y : [0, 1] \rightarrow \mathcal{M}$ to its tangent space representation

Define **Frechet mean** μ of *y*:

•
$$\mu(t) = \underset{x \in \mathcal{M}}{\arg \min} \mathbb{E} \left[d_{\mathcal{M}}^2(y(t), x) \right].$$

Define y's tangent space representation:

•
$$\operatorname{Log}_{\mu} y : t \mapsto \operatorname{Log}_{\mu(t)} y(t).$$

•
$$\forall t \in [0,1], \operatorname{Log}_{\mu(t)} y(t) \in T_{\mu(t)} \mathcal{M}$$

Vector fields with this property $\{V(t) : \forall t \in [0,1], V(t) \in T_{\mu(t)}\mathcal{M}\}$ form a vector space:

- Endow with an inner product: $\langle\!\langle U, V \rangle\!\rangle_{\mu} \coloneqq \int_{[0,1]} \langle V(t), U(t) \rangle_{\mu(t)} dt$
- This forms a **Hilbert space** we denote $L^2(T\mu)$.

Population CCA Problem

 The canonical correlation problem we end up with is the following: for y: [0,1] → M and X ∈ ℝ^p, solve

$$\underset{a \in \mathbb{R}^{p}, b \in L^{2}(T\mu)}{\text{maximize}} \operatorname{Corr}^{2}\left(\langle\!\langle b, \operatorname{Log}_{\mu} y \rangle\!\rangle_{\mu}, \langle a, X \rangle\right)$$
(1)

subject to the constraints that

$$\operatorname{Var}\left(\langle a, X \rangle\right) = \operatorname{Var}\left(\langle b, \operatorname{Log}_{\mu} y \rangle\rangle_{\mu}\right) = 1.$$

- a and b called the canonical directions.
- In order to interpret the canonical direction b, we can map it back to the manifold via the exponential map along μ.
 t ↦ Exp_{µ(t)} (b(t))

Population CCA Problem

 The canonical correlation problem we end up with is the following: for y: [0,1] → M and X ∈ ℝ^p, solve

$$\underset{a \in \mathbb{R}^{p}, b \in L^{2}(T\mu)}{\text{maximize}} \operatorname{Corr}^{2}\left(\langle\!\langle b, \operatorname{Log}_{\mu} y \rangle\!\rangle_{\mu}, \langle a, X \rangle\right)$$
(1)

subject to the constraints that

$$\operatorname{Var}\left(\langle a, X \rangle\right) = \operatorname{Var}\left(\langle b, \operatorname{Log}_{\mu} y \rangle\rangle_{\mu}\right) = 1.$$

- a and b called the canonical directions.
- In order to interpret the canonical direction b, we can map it back to the manifold via the exponential map along μ.
 t ↦ Exp_{µ(t)} (b(t))
- Two issues to handle: *a* is **high dimensional**, and *b* lives in an **infinite dimensional space** $L^2(T\mu)$.

Approach to the problem

How to handle infinite dimensional $L^2(T\mu)$?

We don't expect $\log_\mu y$ to vary in its infinite dimensional space along many directions.

• Use dimensionality reduction.

We can use the data-driven functional Principal component analysis (FPCA) to find the 'best' finite dimensional basis to project $Log_{\mu} y$ into.

• This reduces $Log_{\mu} y$ to a multivariate $Y \in \mathbb{R}^d$.

 $\log_{\mu} y \approx \sum_{j=1}^{d} \phi_j Y_j$ for functions $\phi_j \in L^2(T\mu)$ and a random vector $Y \in \mathbb{R}^d$.

- ϕ_j are the principal components.
- Y_j are the principal scores.

Problem Reformulation: Multivariate CCA

$$\underset{a \in \mathbb{R}^{p}, \eta \in \mathbb{R}^{d}}{\text{maximize } \operatorname{Corr}^{2}\left(\langle\!\langle \eta, Y \rangle\!\rangle, \langle a, X \rangle\right) }$$
(2)

b related to η via $b = \sum_{k=1}^{d} \eta_k \phi_k$.

Multivariate CCA with high-dimensional X

- $X \in \mathbb{R}^p$, p large and $Y \in \mathbb{R}^d$, d small.
- In practice we have N samples: if N is smaller than p, then classical CCA fails.
 - Classical CCA uses an estimate of the **precision matrix** Σ_X^{-1} .
 - Estimation for N on the form of Σ_X or Σ_X⁻¹.
- In the high-dimensional setting, we would like to do variable selection.
 - Even if N > p, classical CCA does not perform variable selection.
 - Ideally we would have sparse estimates a_k: then the canonical variable a^T_kX ignores the corresponding X variables where there are 0s in a_k.
 - Sparse canonical directions are much more interpretable.

Sparse regression implies sparse CCA

Theorem

Letting B be the solution to the multivariate least-squares problem

$$\underset{B \in \mathbb{R}^{p \times d}}{\text{minimize}} \mathbb{E}\left[\| \Sigma_Y^{-1/2} Y - B^{\mathsf{T}} X \|_2^2 \right],$$
(3)

we can find all canonical vectors for both Y and X via B. Denote the canonical vectors associated with X (the a_k) as the columns of A, and those with Y (the η_k) as the columns of H. Let the eigenvector decomposition of the matrix $B^T \Sigma_X B$ be $ED^2 E^T$ where $E \in \mathbb{R}^{d \times d}$ is orthogonal, and $D \in \mathbb{R}^{d \times d}$ is diagonal. Then, $H = \Sigma_Y^{-1/2} E$ and $A = BED^{-1}$.

Sparse regression implies sparse CCA

Theorem

Letting B be the solution to the multivariate least-squares problem

$$\underset{B \in \mathbb{R}^{p \times d}}{\text{minimize}} \mathbb{E}\left[\| \Sigma_Y^{-1/2} Y - B^{\mathsf{T}} X \|_2^2 \right],$$
(3)

we can find all canonical vectors for both Y and X via B. Denote the canonical vectors associated with X (the a_k) as the columns of A, and those with Y (the η_k) as the columns of H. Let the eigenvector decomposition of the matrix $B^T \Sigma_X B$ be $ED^2 E^T$ where $E \in \mathbb{R}^{d \times d}$ is orthogonal, and $D \in \mathbb{R}^{d \times d}$ is diagonal. Then, $H = \Sigma_Y^{-1/2} E$ and $A = BED^{-1}$.

Sparsity in the regression matrix B is carried over into our estimates of the canonical vectors for X.

• If B has only s non-zero rows, then A has only s non-zero rows.

Methodology

- 1. We are **given** $(X_i, y_i(t_l))$ pairs for i = 1, ..., N, l = 1, ..., L, where $X_i \in \mathbb{R}^p$, $y_i : [0, 1] \rightarrow \mathcal{M}$.
- Estimate the Frechet mean of the {y_i(t_i)}_{i=1,...N} for every *l*, forming µ(t_i).
- 3. **Compute** $\text{Log}_{\hat{\mu}(t_l)} y_i(t_l) \in T_{\hat{\mu}(t_l)} \mathcal{M}$ for all *i* and *l*.
- 4. Summarize the $\text{Log}_{\hat{\mu}} y_i$ as $Y_i \in \mathbb{R}^d$ with **FPCA**: $\text{Log}_{\hat{\mu}} y \approx \sum_{j=1}^d \hat{\phi}_j Y_j$ for functions $\hat{\phi}_j \in L^2(T\hat{\mu}), j = 1, ... d$.
- 5. Compute \hat{B} solving the group lasso problem

$$\hat{B} = \underset{B \in \mathbb{R}^{p \times d}}{\arg\min} \frac{2}{N} \left\| \mathbb{Y} \hat{\Sigma}_{Y}^{-1/2} - \mathbb{X} B \right\|_{F}^{2} + \lambda \left\| B \right\|_{\ell_{1},\ell_{2}}$$
(4)

- 6. Find the **eigenvector decomposition** $ED^2E^{\mathsf{T}} = \hat{B}^{\mathsf{T}}\hat{\Sigma}_X\hat{B}$.
- 7. **Compute** $\hat{H} = [\hat{\eta}_1, \dots, \hat{\eta}_d]$ and $\hat{A} = [\hat{a}_1, \dots, \hat{a}_d]$ via $\hat{H} = \hat{\Sigma}_Y^{-1/2} E$ and $\hat{A} = \hat{B} E D^{-1}$. Then $\hat{b}_j = \sum_{k=1}^d \hat{\phi}_k \hat{\eta}_{jk} \in L^2(T\hat{\mu})$.
- 8. **Return** canonical directions \hat{A} and $\{\hat{b}_j\}_{j=1,...d}$.

Special case of multivariate Y

Main assumptions (slow-rate bound):

- $X \in \mathbb{R}^p$ and $Y \in \mathbb{R}^d$ are subgaussian, with invertible covariance matrices.
- $d\log(p) = o(N)$
- Lasso parameter $\lambda = O\left(\sqrt{\frac{d \log(p)}{N}}\right)$ rate.

$$\|a_{k} - \hat{a}_{k}\|_{2}^{2} = O_{P}\left(\left(\frac{d}{N}\log\left(p\right)\right)^{1/2} \frac{\|\Sigma_{X}^{-1}\|_{2}}{\min\left(\gamma_{k-1}^{2} - \gamma_{k}^{2}, \gamma_{k}^{2} - \gamma_{k+1}^{2}\right)^{2}}\right),\$$

$$\|\eta_{k} - \hat{\eta}_{k}\|_{2}^{2} = O_{P}\left(\left(\frac{d}{N}\log\left(p\right)\right)^{1/2} \frac{\left\|\Sigma_{Y}^{-1}\right\|_{2}}{\min\left(\gamma_{k-1}^{2} - \gamma_{k}^{2}, \gamma_{k}^{2} - \gamma_{k+1}^{2}\right)^{2}}\right).$$

Assumptions:

- The manifold \mathcal{M} is a complete simply-connected Riemannian manifold with nonpositive sectional curvature.
- The functional data are such that $\sup_{t \in \mathcal{T}} \mathbb{E} \left[d \left(y_1(t), y_2(t) \right)^3 \right] < \infty$.
- The *a_k* satsify an group *s*-sparsity condition.

$$\|a_{k} - \hat{a}_{k}\|_{2}^{2} = O_{P}\left(\frac{ds\log(p)}{N}\frac{1}{\min\left(\gamma_{k-1}^{2} - \gamma_{k}^{2}, \gamma_{k}^{2} - \gamma_{k+1}^{2}\right)^{2}}\right),$$
$$\|b_{k} - \Gamma_{\hat{\mu}, \mu}\hat{b}_{k}\|_{\mu}^{2} = O_{P}\left(\frac{d^{2}s\log(p)}{N}\frac{1}{\min\left(\gamma_{k-1}^{2} - \gamma_{k}^{2}, \gamma_{k}^{2} - \gamma_{k+1}^{2}\right)^{2}}\right).$$

Application

Connectivity

DEM DEM -PCC DFM

VIS DEM

First CCA Mode -

1.00

0.75

First CCA Mode -

Time (m)

Canonical corrrelation analysis via Variational Autoencoders

Motivation

Motivation

• Dimension reduction and CCA are not done jointly.

Motivation

- Dimension reduction and CCA are not done jointly.
- Nonlinear mapping (moving to tangent spaces) is prespecified.

- On the other hand, we can think of the dimension reduced Y as a **latent variable.**
- Both PCA and CCA can be defined in terms of latent variable models.
- Probabilistic PCA: $Y \in \mathbb{R}^d$, $y \in \mathbb{R}^q$, q > d:

$$Y \sim \mathcal{N}\left(0, I_d\right) \tag{5}$$

$$y \sim \mathcal{N}\left(WY + \mu, \sigma^2 I_q\right) \tag{6}$$

 Given a finite sample {Y_i}_{i=1,...N}, the maximum likelihood solution for W reduces to classical PCA as σ approaches 0.

Original Model

- Dimension reduction and CCA are not done jointly.
- Nonlinear mapping (moving to tangent spaces) is prespecified.

Model - Variational Autoencoder

Model - Variational Autoencoder

• We still perform CCA by learning the regression matrix B, but now the encoder and decoder (represented by a neural networks) is a learned nonlinear mapping.

Model - Variational Autoencoder

• Data $X_i \in \mathbb{R}^p$ and imaging data y_i , i = 1, ..., N.

- ξ are the parameters for the decoder, while γ control the parameters for the encoder.
- We can then apply the same eigenvector approach as before to learn the canonical vectors via *B*, relative to *X* and *Y*.
- The canonical vectors for y can then be mapped through the decoder: b_k = D_ξ (η_k)

Conclusions

- We define the CCA problem in the asymmetric setting of X multivariate and y : T → M, by utilizing the Frechet mean and Logarithmic map on M.
- Theoretical guarantees for manifold and multivariate cases.
- We use our methodology to find shared correlation structure between dynamical functional connectivity and subject traits.
- We generalize our model from the first project via variational autoencoders to automatically uncover non-linear structure.

Questions?