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Setup

The non-discretized system of differential equations is:

∂y

∂τ
=

1

Pe

∂2y

∂s2
− ∂y

∂s
−Df(y, θ),

∂θ

∂τ
=

1

Pe

∂2θ

∂s2
− ∂θ

∂s
− β(θ − θ0) +

BD

µ
f(y, θ),

where s ∈ (0, 1), τ ≥ 0. f(y, θ) = yeγ(1−
1
θ
). s and τ are the non dimensional length and

time respectively. y and θ represent the non-dimensional concentration and temperature
respectively. Pe is the Péclet number. γ, B, β, and θ0 are known constants of the system.
D is the Damköhler number which controls the dynamics of the system. Robin boundary
condition is imposed at the left boundary (s = 0) while the Neumann condition is given at
the right boundary (s = 1):
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∂s
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s=0

= Pe(y|s=0 − µ)

∂θ

∂s
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s=0

= Pe(θ|s=0 − 1)

∂y

∂s

∣∣∣∣
s=1

= 0

∂θ

∂s

∣∣∣∣
s=1

= 0

We let Pe = 5, γ = 25, B = .5, β = 2.5, µ = 1, and θ0 = 1.
The system is discretized as in [1] in the spatial domain with resolution ∆s = 1

N+1
,

where N is the number of interior grid points. We define for the original system a state
vector containing the concentration and temperature evaluated at the interior grid points:
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u =

[
y
θ

]
∈ R2N×1, with y =

y1(τ)
...

yN(τ)

 ∈ RN×1, and θ =

 θ1(τ)
...

θN(τ)

 .
yi(τ) = y(si, τ), and θi(τ) = θ(si, τ), with si = i∆s. A second-order centered difference
method is applied in the interior of the domain. Second-order forward and backward dif-
ference schemes are used for the inflow and outflow boundary conditions respectively. The
semi-discretized system is found to be

u̇ = Au+ b+ F (u; D) (1)

where

A =

[
AD −AC 0

0 A1

]
∈ R2N×2N , A1 = AD −AC − βI (2)

AD =
1

Pe(∆s)2


AD1,1 AD1,2

1 −2 1
. . . . . . . . .

1 −2 1
ADN,N−1 ADN,N

 ∈ RN×N (3)

AC =
1

2∆s


AC1,1 AC1,2
−1 0 1

. . . . . . . . .

−1 0 1
ACN,N−1 ACN,N

 ∈ RN×N (4)

AD1,1 =
4

3 + 2∆sPe
− 2 AC1,1 =

−4

3 + 2∆sPe

AD1,2 = − 1

3 + 2∆sPe
+ 1 AC1,2 =

1

3 + 2∆sPe
+ 1

ADN,N−1 =
2

3
ACN,N−1 =

4

3

ADN,N = −2

3
ACN,N = −4

3
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Note that A and b are defined differently in [1], and unless the corrections are made,
their plots aren’t reproducible.

b =

[
by
bθ

]
∈ R2N×1, where by =


b0µ
0
...
0

 ∈ RN×1, bθ =


b0 + βθ0
βθ0

...
βθ0

 ∈ RN×1

and

b0 =
2 + Pe∆s

∆s(3 + 2∆sPe)
.

F (u) =

[
−Df(u)
BD
µ
f(u)

]
∈ R2N×1

with

f(u) =

 f(y1, θ1)
...

f(yN , θN)

 ∈ RN×1 (5)

and

f(yi, θi) = yie
γ− γ

θi .

AD1,1, A
D
1,2, A

D
N,N , ADN,N , AC1,1, A

C
1,2, A

C
N,N−1, A

C
N,N , and b0 arise due to one-sided finite-

difference approximations at the two boundaries.

Polynomialization

We follow the steps described on the bottom of page 1312 of [2], the part referring to
composition of functions.

Steps 1 and 2

We let

g1(x) = ex, g2(x) = γ(1− x), g3(x) =
1

x
,

and

h3i = g3(θi), h2i = g2(h3i), h1i = g1(h2i),

for i = 1, 2, ...N . From these definitions f(yi, θi) = yie
γ(1− 1

θi
)

can be written as yih1i.
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Step 3

The new differential equations are(from the chain rule):

ḣ3i = − 1

θ2i
θ̇i = −h23iθ̇i (6)

ḣ2i = −γḣ3i = γh23iθ̇i (7)

ḣ1i = h1iḣ2i = γh1ih
2
3iθ̇i (8)

for i = 1, 2, ...N .

Quadraticization

From equation (1), the θ differential equations are(a sub i on a matrix or column denotes
the ith row):

θ̇i = (AD −AC − βI)iθ + (bθ)i +
BD

µ
yih1i. (9)

Plugging (9) into equations (6), (7), and (8) we see that these differential equations are not
quadratic. To make them quadratic we follow the procedure in [2](pages 1313-1314) and
introduce 3N new variables:

pi = h23i
qi = h1ih

2
3i = h1ipi

ri = h21ih
2
3i = h1iqi

or

0 = pi − h23i (10)

0 = qi − h1ipi (11)

0 = ri − h1iqi (12)

for i = 1, ...N . Now the new differential equations become:

ḣ3i = −(pi(A
D −AC − βI)iθ + (bθ)ipi +

BD

µ
yiqi) (13)

ḣ2i = γ(pi(A
D −AC − βI)iθ + (bθ)ipi +

BD

µ
yiqi) (14)

ḣ1i = γ(qi(A
D −AC − βI)iθ + (bθ)iqi +

BD

µ
yiri) (15)
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Transformed System

In matrix form, the complete set of differential equations become:

Eẋ = Gx+Hx2 + b̄ (16)

where x = (y1, ..., yN , θ1, ..., θN , h31, ..., h3N , h21, ...h2N , h11, ..., h1N , p1, ...pN , q1, ..., qN , r1, ..., rN)T ∈
R8N .
x2 is defined as:

x2 =

x
(1)

...
x(N)

 ,
where

x(i) = xi

x1...
xi

 .
xi is the ith element of x, and S = 8N(8N + 1)/2.

If x had n elements, then the xixj element of x2 would be at the (i−1)(i)/2+j position if
i ≥ j. Using equations (1), (13), (14), (15), (10), (11), and (12); E ∈ R8N×8N ,G ∈ R8N×8N ,
and H ∈ R8N×S can be constructed in blocks of N rows at a time.

E =

[
I

0

]
,

where I ∈ R5N×5N and the rest of the matrix is zeros. E is referred to as the mass matrix.
The form of G and H is not obvious from matrices, but can be defined in Matlab more

easily:
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b̄ ∈ R8N×1 is defined as

b̄ =


b
0
...
0

 . (17)

Discussion/Comparison

We used ode15s to timestep these quadraticized differential algebraic equations. When com-
pared to timestepping the original system(equation (3.4) in [1]), the plots should be identical,
as this is an exact transformation. It should be noted that the system went from size 2N to
size 8N, with 3N new differential equations and 3N new algebraic equations. The simplifi-
cation of the form of the equations(exponential terms to only quadratic terms) came at the
price of more equations as well as algebraic ones. This simpler form of the new system could
make it more amenable to certain types of model order reduction.

Limit Cycle Oscillation(LCO) Amplitude

Below are plots of the temperature at the right boundary for various Damköhler numbers,
as well as a comparison of the maximum temperature at the right boundary from t = 8 to
15 for ten Damköhler numbers chosen linearly from D ∈ [.16, .17] between the original and
transformed system. There are small discrepancies between the plots, and these could be
attributed to either our ode solver or an error in implementation.
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Singular Values

Below are plots of the largest singular values of the state matrices(matrices where each
column corresponds to a timestep of the system) made with a 100 timesteps(equally spaced)
between 0 and 15. The concatenated matrices were formed by adjoining 10 state matrices
each with a different Damköhler number, spaced linearly from .16 to .17. Then we found the
SVD of this larger matrix. This was done for both the original and transformed systems.
We also plotted the singular values of the individual state matrices over the same range of
.16 to .17 but on the same plots, for the original and transformed systems.
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Computation Time

Below are plots of the time it took standard(no tuning) ode15s to solve the original and
transformed system for various Damkölher numbers.
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Stability Plots

The stability of the eigen-values from the A matrix (from the original system) and the G
matrix(from the transformed system) is analyzed. Below are the Imaginary vs. Real plots
for the these two matrices. Because all the eigen-values are negative both systems are stable.
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To determine how stable each system is histograms of the eigen-values are made. Be-
low are the histograms of the original and transformed systems. The plots show that the
transformed system has many more eigen-values close to zero than the original system. This
means the the transformed system is less stable than the original system.
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Log plots of the eigen-values for the original and transformed system are shown on the
following page. Note that the zero-value eigen-values for the transformed system are not
shown in the plot. This is because of the nature of the log plot function in matlab.
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